SpaceX Dragon Heads to Space Station with NASA Science, Cargo

7 March 2020

WASHINGTON, March 7, 2020 /PRNewswire/ -- A SpaceX Dragon cargo spacecraft is on its way to the International Space Station after launching at 11:50 p.m. EST Friday. Dragon will deliver more than 4,300 pounds of NASA cargo and science investigations, including a new science facility scheduled to be installed to the outside of the station during a spacewalk this spring.

The spacecraft launched on a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida and is scheduled to arrive at the orbital outpost on Monday, March 9. Coverage of the spacecraft's approach and arrival at the space station will begin at 5:30 a.m. EDT on NASA Television and the agency's website.

Dragon will join three other spacecraft currently at the station. When it arrives, NASA Flight Engineer Andrew Morgan will grapple Dragon, backed up by NASA's Jessica Meir. Coverage of robotic installation to the Earth-facing port of the Harmony module will begin at 8:30 a.m.

Dragon is scheduled to remain at the space station until April 9, when the spacecraft will return to Earth with research and cargo.

This delivery, SpaceX's 20th cargo flight to the space station under NASA's Commercial Resupply Services contract, will support dozens of new and existing investigations. NASA's research and development work aboard the space station contributes to the agency's deep space exploration plans, including future Moon and Mars missions.

Here are details about some of the scientific investigations Dragon is delivering:

New Facility Outside the Space Station

The Bartolomeo facility, created by ESA (European Space Agency) and Airbus, attaches to the exterior of the European Columbus Module. Designed to provide new scientific opportunities on the outside of the space station for commercial and institutional users, the facility offers unobstructed views both toward Earth and into space. Potential applications include Earth observation, robotics, material science and astrophysics.

Studying the Human Intestine On a Chip

Organ-Chips as a Platform for Studying Effects of Space on Human Enteric Physiology (Gut on Chip) examines the effect of microgravity and other space-related stress factors on biotechnology company Emulate's human innervated Intestine-Chip (hiIC). This Organ-Chip device enables the study of organ physiology and diseases in a laboratory setting. It allows for automated maintenance, including imaging, sampling, and storage on orbit and data downlink for molecular analysis on Earth.

Growing Human Heart Cells

Generation of Cardiomyocytes From Human Induced Pluripotent Stem Cell-derived Cardiac Progenitors Expanded in Microgravity (MVP Cell-03) examines whether microgravity increases the production of heart cells from human-induced pluripotent stem cells (hiPSCs). The investigation induces stem cells to generate heart precursor cells and cultures those cells on the space station to analyze and compare with cultures grown on Earth.

These are just a few of the hundreds of investigations providing opportunities for U.S. government agencies, private industry, and academic and research institutions to conduct microgravity research that leads to new technologies, medical treatments and products that improve life on Earth. Conducting science aboard the orbiting laboratory will help us learn how to keep astronauts healthy during long-duration space travel and demonstrate technologies for future human and robotic exploration beyond low-Earth orbit to the Moon and Mars.

For almost 20 years, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth that will enable long-duration human and robotic exploration into deep space. As a global endeavor, 239 people from 19 countries have visited the unique microgravity laboratory that has hosted more than 2,800 research investigations from researchers in 108 countries.

For more information about the International Space Station, its research, and crew, visit:

https://www.nasa.gov/station

Cision View original content to download multimedia:http://www.prnewswire.com/news-releases/spacex-dragon-heads-to-space-station-with-nasa-science-cargo-301019354.html

SOURCE NASA

SpaceX Dragon Heads to Space Station with NASA Science, Cargo

5 December 2019

WASHINGTON, Dec. 5, 2019 /PRNewswire/ -- A SpaceX Dragon cargo spacecraft is on its way to the International Space Station after launching at 12:29 p.m. EST Thursday. Dragon will deliver more than 5,700 pounds of NASA cargo and science investigations, including studies of malting barley in microgravity, the spread of fire, and bone and muscle loss.

SpaceX launches its 19th cargo resupply mission to the International Space Station at 12:29 p.m. EST Dec. 5, 2019, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida. Credit: NASA TV

The spacecraft launched on a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida and is scheduled to arrive at the orbital outpost on Sunday, Dec. 8. Coverage of the spacecraft's approach and arrival at the space station will begin at 4:30 a.m. on NASA Television and the agency's website.

Dragon will join three other spacecraft currently at the station. Expedition 61 Commander Luca Parmitano of ESA (European Space Agency) will grapple Dragon with NASA astronaut Andrew Morgan acting as a backup. NASA's Jessica Meir will assist the duo by monitoring telemetry during Dragon's approach. Coverage of robotic installation to the Earth-facing port of the Harmony module will begin at 8 a.m.

This delivery, SpaceX's 19th cargo flight to the space station under NASA's Commercial Resupply Services contract, will support dozens of new and existing investigations. NASA's research and development work aboard the space station contributes to the agency's deep space exploration plans, including future Moon and Mars missions.

Here are details about some of the scientific investigations Dragon is delivering:

A Better Picture of Earth's Surface

The Hyperspectral Imager Suite (HISUI) is a next-generation, hyperspectral Earth imaging system. Every material on Earth's surface – rocks, soil, vegetation, snow/ice and human-made objects – has a unique reflectance spectrum. HISUI provides space-based observations for tasks such as resource exploration and applications in agriculture, forestry and other environmental areas.

Malting Barley in Microgravity

Malting ABI Voyager Barley Seeds in Microgravity tests an automated malting procedure and compares malt produced in space and on the ground for genetic and structural changes. Understanding how barley responds to microgravity could identify ways to adapt it for nutritional use on long-duration spaceflights.

Spread of Fire

The Confined Combustion investigation examines the behavior of flames as they spreads in differently shaped confined spaces in microgravity. Studying flames in microgravity gives researchers a better look at the underlying physics and basic principles of combustion by removing gravity from the equation.

Keeping Bones and Muscles Strong

Rodent Research-19 (RR-19) investigates myostatin (MSTN) and activin, molecular signaling pathways that influence muscle degradation, as possible targets for preventing muscle and bone loss during spaceflight and enhancing recovery following return to Earth. This study also could support the development of therapies for a wide range of conditions that cause muscle and bone loss on Earth.

Checking for Leaks

NASA is launching Robotic Tool Stowage (RiTS), a docking station that allows Robotic External Leak Locator (RELL) units to be stored on the outside of space station, making it quicker and simpler to deploy the instruments. The leak locator is a robotic, remote-controlled tool that helps mission operators detect the location of an external leak and rapidly confirm a successful repair. These capabilities can be applied to any place that humans live in space, including NASA's lunar Gateway and eventually habitats on the Moon, Mars, and beyond.

These are just a few of the hundreds of investigations providing opportunities for U.S. government agencies, private industry, and academic and research institutions to conduct microgravity research that leads to new technologies, medical treatments and products that improve life on Earth. Conducting science aboard the orbiting laboratory will help us learn how to keep astronauts healthy during long-duration space travel and demonstrate technologies for future human and robotic exploration beyond low-Earth orbit to the Moon and Mars.

For almost 20 years, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth that will enable long-duration human and robotic exploration into deep space. As a global endeavor, more than 230 people from 18 countries have visited the unique microgravity laboratory that has hosted more than 2,500 research investigations from researchers in 106 countries.

For more information about the International Space Station, its research, and crew, visit:

https://www.nasa.gov/station

NASA Logo. (PRNewsFoto/NASA) (PRNewsFoto/) (PRNewsfoto/NASA)

Cision View original content to download multimedia:http://www.prnewswire.com/news-releases/spacex-dragon-heads-to-space-station-with-nasa-science-cargo-300970251.html

SOURCE NASA

SpaceX Dragon Heads to Space Station with NASA Science, Cargo

4 May 2019

WASHINGTON, May 4, 2019 /PRNewswire/ -- After launching at 2:48 a.m. EDT Saturday, a SpaceX Dragon cargo spacecraft is on its way to the International Space Station with approximately 5,500 pounds of NASA cargo and science investigations that include research into Earth's carbon cycle and the formation of asteroids and comets.  

NASA Logo. (PRNewsFoto/NASA) (PRNewsFoto/)

The spacecraft launched on a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida and is scheduled to arrive at the orbiting laboratory on Monday, May 6. Dragon will join five other spacecraft currently at the station. Coverage of the spacecraft's approach and arrival will begin at 5:30 a.m. on NASA Television and the agency's website.

Dragon's launch comes on the heels of robotics ground controllers in Mission Control Houston successfully completing an operation to remove a failed Main Bus Switching Unit (MBSU) aboard the space station and replace it with a spare. The completion of the robotics work marks the second replacement of an MBSU not involving a spacewalk. The space station continues to be a critical test bed where NASA is pioneering new methods to explore space, from complex robotic work to refueling spacecraft in flight and developing new robotic systems to assist astronauts on the frontier of space. Technologies such as these will be vital as NASA looks to return astronauts to the Moon by 2024.

Expedition 59 astronauts David Saint-Jacques of the Canadian Space Agency and Nick Hague of NASA will use the space station's robotic arm to grapple Dragon around 7 a.m. Coverage of robotic installation to the Earth-facing port of the Harmony module will begin at 9 a.m.

This delivery, SpaceX's 17th cargo flight to the space station under NASA's Commercial Resupply Services contract, will support dozens of new and existing investigations. NASA's research and development work aboard the space station contributes to the agency's deep space exploration plans, including returning astronauts to the Moon's surface in five years.

Here are details about some of the scientific investigations Dragon is delivering to the space station:

Measuring Atmospheric CO2 from Space

NASA's Orbiting Carbon Observatory-3 (OCO-3) examines the complex dynamics of Earth's atmospheric carbon cycle by collecting measurements to track variations in a specific type of atmospheric carbon dioxide. Understanding carbon sources can aid in forecasting increased atmospheric heat retention and reduce its long-term risks.

Putting Microalgae on the Menu

The Photobioreactor investigation aims to demonstrate how microalgae can be used together with existing life support systems on the space station to improve recycling of resources. The cultivation of microalgae for food, and as part of a life support system to generate oxygen and consume carbon dioxide, could be helpful in future long-duration exploration missions, as it could reduce the amount of consumables required from Earth.

Organs on Chips Advance Human Health Research

Scientists are using a new technology called tissue chips, which could help predict the effectiveness of potential medicines in humans. Fluid that mimics blood can be passed through the chip to simulate blood flow, and can include drugs or toxins. In microgravity, changes occur in human health and human cells that resemble accelerated aging and disease processes. This investigation allows scientists to make observations over the course of a few weeks in microgravity rather than the months it would take in a laboratory on Earth.

Multi-Use Microgravity Experiment Platform

The Hermes facility allows scientists to study the dusty, fragmented debris covering asteroids and moons, called regolith. Once installed by astronauts on the space station, scientists will be able to take over the experiment from Earth to study how regolith particles behave in response to long-duration exposure to microgravity, including changes to pressure, temperate and shocks from impacts and other forces. The investigations will provide insight into the formation and behavior of asteroids, comets, impact dynamics and planetary evolution.

These are just a few of the hundreds of investigations that will help us learn how to keep astronauts healthy during long-duration space travel and demonstrate technologies for future human and robotic exploration beyond low-Earth orbit to the Moon and Mars. Space station research also provides opportunities for other U.S. government agencies, private industry, and academic and research institutions to conduct microgravity research that leads to new technologies, medical treatments, and products that improve life on Earth.

For more than 18 years, humans have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, and making research breakthroughs not possible on Earth that will enable long-duration human and robotic exploration into deep space. A global endeavor, more than 230 people from 18 countries have visited the unique microgravity laboratory that has hosted more than 2,500 research investigations from researchers in 106 countries.

Get breaking news, images and features from the station on social media, at:

https://instagram.com/iss

and

https://www.twitter.com/ISS_Research

and

https://www.twitter.com/Space_Station

Cision View original content to download multimedia:http://www.prnewswire.com/news-releases/spacex-dragon-heads-to-space-station-with-nasa-science-cargo-300843875.html

SOURCE NASA